113 research outputs found

    Pauli's Principle in Probe Microscopy

    Get PDF
    Exceptionally clear images of intramolecular structure can be attained in dynamic force microscopy through the combination of a passivated tip apex and operation in what has become known as the "Pauli exclusion regime" of the tip-sample interaction. We discuss, from an experimentalist's perspective, a number of aspects of the exclusion principle which underpin this ability to achieve submolecular resolution. Our particular focus is on the origins, history, and interpretation of Pauli's principle in the context of interatomic and intermolecular interactions.Comment: This is a chapter from "Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy", a book which is part of the "Advances in Atom and Single Molecule Machines" series published by Springer [http://www.springer.com/series/10425]. To be published late 201

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface

    Sex-biased parental care and sexual size dimorphism in a provisioning arthropod

    Get PDF
    The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests. To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest. We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight. Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species

    Theoretical description of hydrogen bonding in oxalic acid dimer and trimer based on the combined extended-transition-state energy decomposition analysis and natural orbitals for chemical valence (ETS-NOCV)

    Get PDF
    In the present study we have analyzed hydrogen bonding in dimer and trimer of oxalic acid, based on a recently proposed charge and energy decomposition scheme (ETS-NOCV). In the case of a dimer, two conformations, α and β, were considered. The deformation density contributions originating from NOCV’s revealed that the formation of hydrogen bonding is associated with the electronic charge deformation in both the σ—(Δρσ) and π-networks (Δρπ). It was demonstrated that σ-donation is realized by electron transfer from the lone pair of oxygen on one monomer into the empty \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}ρHO \rho_{H - O}^* \end{document} orbital of the second oxalic acid fragment. In addition, a covalent contribution is observed by the density transfer from hydrogen of H-O group in one oxalic acid monomer to the oxygen atom of the second fragment. The resonance assisted component (Δρπ), is based on the transfer of electron density from the π—orbital localized on the oxygen of OH on one oxalic acid monomer to the oxygen atom of the other fragment. ETS-NOCV allowed to conclude that the σ(O---HO) component is roughly eight times as important as π (RAHB) contribution in terms of energetic estimation. The electrostatic factor (ΔEelstat) is equally as important as orbital interaction term (ΔEorb). Finally, comparing β-dimer of oxalic acid with trimer we found practically no difference concerning each of the O---HO bonds, neither qualitative nor quantitative

    Anisotropic Charge Distribution and Anisotropic van der Waals Radius Leading to Intriguing Anisotropic Noncovalent Interactions

    Get PDF
    Although group (IV-VII) nonmetallic elements do not favor interacting with anionic species, there are counterexamples including the halogen bond. Such binding is known to be related to the charge deficiency because of the adjacent atom's electron withdrawing effect, which creates s/p-holes at the bond-ends. However, a completely opposite behavior is exhibited by N-2 and O-2, which have electrostatically positive/negative character around cylindrical-bond-surface/bond-ends. Inspired by this, here we elucidate the unusual features and origin of the anisotropic noncovalent interactions in the ground and excited states of the 2nd and 3rd row elements belonging to groups IV-VII. The anisotropy in charge distributions and van der Waals radii of atoms in such molecular systems are scrutinized. This provides an understanding of their unusual molecular configuration, binding and recognition modes involved in new types of molecular assembling and engineering. This work would lead to the design of intriguing molecular systems exploiting anisotropic noncovalent interactions.open

    Eft for DFT

    Get PDF
    These lectures give an overview of the ongoing application of effective field theory (EFT) and renormalization group (RG) concepts and methods to density functional theory (DFT), with special emphasis on the nuclear many-body problem.Comment: 57 pages, to appear in the proceedings of the ECT* school on "Renormalization Group and Effective Field Theory Approaches to Many-Body Systems", Springer Lecture Notes in Physics; acknowledgment adde

    Long-range corrected DFT calculations of charge-transfer integrals in model metal-free phthalocyanine complexes

    Get PDF
    An assessment of several widely used exchange--correlation potentials in computing charge-transfer integrals is performed. In particular, we employ the recently proposed Coulomb-attenuated model which was proven by other authors to improve upon conventional functionals in the case of charge-transfer excitations. For further validation, two distinct approaches to compute the property in question are compared for a phthalocyanine dimer

    Male urine signals social rank in the Mozambique tilapia (Oreochromis mossambicus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The urine of freshwater fish species investigated so far acts as a vehicle for reproductive pheromones affecting the behaviour and physiology of the opposite sex. However, the role of urinary pheromones in intra-sexual competition has received less attention. This is particularly relevant in lek-breeding species, such as the Mozambique tilapia (<it>Oreochromis mossambicus</it>), where males establish dominance hierarchies and there is the possibility for chemical communication in the modulation of aggression among males. To investigate whether males use urine during aggressive interactions, we measured urination frequency of dye-injected males during paired interactions between size-matched males. Furthermore, we assessed urinary volume stored in the bladder of males in a stable social hierarchy and the olfactory potency of their urine by recording of the electro-olfactogram.</p> <p>Results</p> <p>Males released urine in pulses of short duration (about one second) and markedly increased urination frequency during aggressive behaviour, but did not release urine whilst submissive. In the stable hierarchy, subordinate males stored less urine than males of higher social rank; the olfactory potency of the urine was positively correlated with the rank of the male donor.</p> <p>Conclusion</p> <p>Dominant males store urine and use it as a vehicle for odorants actively released during aggressive disputes. The olfactory potency of the urine is positively correlated with the social status of the male. We suggest that males actively advertise their dominant status through urinary odorants which may act as a 'dominance' pheromone to modulate aggression in rivals, thereby contributing to social stability within the lek.</p
    corecore